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ABSTRACT

Lower bound dynamic fracture toughness parameters for HY-80 and

HY-130 steel and their weld metals are identified. Specific values of the

parameters KId and Klm obtained from direct measurements are reported to-

gether with estimates inferred from the large body of Charpy energy, nil

ductility transition temperature and dynamic tear energy measurements. The

emphasis is on resonable lower bound values at 300 F, the lowest anticipated

service temperature, for use in elastodynamic analyses of crack growth

initiation, propagation, and arrest in ship structures. For these conditions,

it has been found that the ratio KId/aY is approximately equal to 2 inches1/2

for HY-80 steel. For HY-130 steel and the HY-80 and Hy-130 weld metals under
1/2

these same conditions, KId/aY is approximately 1 inch . Consequently, HY-

80 plate appears to be substantially more resistant to fracture under dynamic

loading than are the other three grades examined.



DYNAMIC FRACTURE TOUGHNESS PARAMETERS FOR
HY-80 AND HY-130 STEELS AND THEIR WELDMENTS

by

G. T. Hahn and M. F. Kanninen

INTRODUCTION

Applications of dynamic fracture mechanics to treat crack growth

initiation, unstable propagation, and arrest can now only be made in conditions

where an elastodynamic analysis is applicable. Successful analyses have al-

ready been made of impact experiments [1, 2], nuclear pressure vessels under

thermal shock conditions [3, 4] and gas transmission pipelines [5, 6]. How-

ever, the ability to perform an elastodynamic analysis alone is not enough

to obtain results of practical interest. Values of the materials's resistance

to crack propagation--the dynamic fracture toughness parameters--must also be

available. Unfortunately, for the tough ductile materials used in most

engineering structures, these values are not easy to obtain.

The work reported here is part of a larger effort aimed at providing

a basis for crack propagation analyses in flawed ship hulls subjected to shock

loading. Previous work in this program has shown that elastodynamically de-

rived stress intensity factors can be used to predict crack growth initiation

and propagation under impact loads [1]. Hence, while further development of

the approach is still needed--e.g., to take direct account of crack tip plas-

ticity--it is possible to provide preliminary estimates to evaluate ship hull

performance by coupling these analyses with the material toughness parameters

for the HY-grade steels. This report takes a first step toward the acquisition

of suitable values for such analyses by means of a literature survey of the

fracture properties of HY-80 and HY-130 and their weld metals.
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BACKGROUND DISCUSSION

The analysis of crack growth initiation from a preexisting crack

in a structure and its subsequent rapid unstable propagation and arrest can

now only be effectively treated using elastodynamically determined stress

intensity factors. The stress intensity factor arises in the computed stress

field attending a crack tip. In general, it depends on time, the crack propa-

gation speed, the crack length, the external geometry of the cracked body, and

the applied loads. For a crack propagating in opening made conditions under

fixed external loading, an elastodynamic solution can generally be made, albeit

numerically, to determine the stress intensity factor in the form KI - K (tA)

where i denotes the instantaneous crack speed and t is time.

The criteria governing crack growth initiation and propagation can

be expressed in terms of KI and experimentally determined critical values that

are taken as material properties. First, for the onset of growth for a rapidly

loaded stationary crack

KI (t, o) -Kid (K) ()

where 6 denotes the time rate of change of the applied loading through the

consequent variation in the stress intensity factor. Like Kic, the conventional

fracture toughness, KId will also be a function of temperature. Of course, for

quasi-static loading, KId is identical with Kic.

The deformation state ahead of a propagating crack is generally dif-

ferent from that of a stationary crack. Consequently, the fracture property

associated with a moving crack will differ from one that is not. The criterion

for a rapidly propagating crack takes the form

KI (t, A) - K () (2)

where KID' in addition to being a function of temperature, is assigned a crack

speed-dependence to take account of the rate dependence. It is of some impor-

tance to recognize that the entire KID - KID (a) need not be known to perform



an effective calculation. The minimum value of this function at a given

temperature - conventionally designated as KIm - will suffice in many instances.

Equations (1) and (2), respectively, give quantitative criteria for

crack growth initiation and subsequent unstable propagation. A third such

relation is sometimes used for crack arrest which involves a statically com-

puted value of KI and an "arrest toughness" parameter KIa. However, while

this approach can be useful as an approximation in some conditions, it is not

logically correct. Within the context of an elastodynamic approach, crack

arrest will occur when Equation (2) can no longer be satisfied. That is, a

propagating crack will arrest at a time ta when KI > Klm for all t > ta

While it is true that under some conditions KIa is about equal to KIm,

it does not follow that such an approach is widely applicable. Rather, crack

arrest is properly viewed as the termination point of a general dynamic crack

propagation event for which the relevant fracture property is Klm.

Methods of measuring KId (K), KID (a), and Klm have been devised

and efforts to produce ASTM standards for these tests are underway 9 . How-

ever, very few measurements of this type have so far been performed on the

HY-80, HY-100 and HY-130 grades of steel and their weldments. The main reason

for this is that the high toughness values displayed by these materials at

service temperatures call for prohibitively large LEFM-type test pieces

The bulk of the evaluations performed by the NRL (Naval Research

Laboratory) and by industry rely on less costly measures of toughness: CVN-

(Charpy V-notch) energy, NDT-(Nil Ductility Transition) temperature and DTE

(Dynamic Tear Energy). These relative measures of toughness can be used to

obtain more-or-less approximate estimates of KIC, KId, and K m by way of a

number of empirical correlations identified in Table 1 and Appendix A. Of

these, the NRL DTE-K correlation, (Correlation No. 1 in Table 1) is probably

the most important because NRL relies on it to establish material toughness

requirements.

The logical extension of the ASTM E-399 fracture toughness test standard
size requirements to dynamic loading would call for the crack length and
thickness requirement a, B > 2.5 (KId/Gyd)2 , where OYd is the dynamic yield
stress. Accordingly, a test piece about 20 in. x 20 in. x 10 in. is needed
to measure shelf level toughness values, i.e., KId = 200 ksi /Tn of HY-80

steel (ayd 1 100 ksi rin).

I'. .. " '"
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This report takes a first step toward defining the KId and Klm

values for the HY-80 and HY-130 steels and their weld metals appropriate

for dynamic LEFM analyses of submerged hull structures. The relative im-

portance of base metal, weld metal and HAZ (heat affected zone) is touched

on in Appendix B. The report surveys the limited number KId values obtained

from direct measurements, but draws the bulk of its KId and K estimates

from the larger body of CVN-, NDT-, and DTE-measurements. Since LEFM cal-

culations are likely to be concerned with "worst-case" conditions, the

emphasis is plased on reasonable, lower bound toughness values at the LAST

(lowest anticipated service temperature) which is 30* F for submerged shiphull

structure. These lower bound values are based on the specified minimum CVN-

and DTE-values listed in Table 2, and the trends displayed by representative

heats. In addition, the need for J and K measurements for base and weld

metals and further verification of the NRL-DTE-KIC correlation are identified.
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DYNAMIC FRACTURE TOUGHNESS PROPERTIES

HY-80 Base Plate

Existing direct measurements and estimates of KId (K1  10 5 ksi

i-T sec- ) derived from KIC-, CVN-, and DTE-measurements are summarized in

Figure 1. The CVN curves in Figure 2 illustrate that the NDT temperature

for this grade corresponds roughly with the midpoint of the CVN energy trans-

ition. An estimate of the lower bound, the curve LB, just satisfies the

specified minimum CVN value (50 ft lbs at -120* F) and reflects the likely

temperature variation.

The CVN curves and the KId values inferred form them in Figure 1

(of the Correlations 4 and 5 in Table 1), illustrate that HY-80 displays

ductile, upper shelf-level behavior at the LAST. The KId estimates at the

LAST are derived from CVN and DTE measurements (Correlations 3, 1, and 5 in

Table 1). No crack arrest toughness (Klm) measurements have so far been

performed on HY-80; the estimates in Table 3 are based on the highest NDT

temperature and the KIm reference curve in Figure A-2.
aYd

HY-130 Base Plate

Direct measurements of K are produced in Figure 3, together with
Id

KId estimates based on Klc (Correlation 2), CVN (Correlation 4) and DTE

(Correlation 1). Representative CVN and DTE transition curves are reproduced

in Figures 4 and 5. These curves illustrate that HY-130 grade, like the

HY-80, displays ductile shelf behavior at the LAST.

The specified minimum CVN for this material (60 ft lbs at 300 F)

provides one basis for estimating the lower bound Kic and KId values. The

corresponding DTE provides another. Since the correlation between CVN and

DTE is approximate, it further reduces the lower bound value of DTE associated

with the LAST to 300 ft lbs. This is illustrated in Figure 6. No crack arrest

toughness measurements have so far been performed on HY-130 steel. The estimate

of KIm quoted in Table 3 are based on the KIm reference curve in Figure A-2.

Yd
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TABLE 3. SUMMARY OF ESTIMATES OF TYPICAL AND
LOWER BOUND TOUGHNESS PARAMETERS FOR
HY-80 AND HY-130 STEEL AND WELDMETALS
AT THE LAST (300F)

Material Toughness Typical Lowerbound
Parameter Value Est imate

HY-80 NDT, OF -150 -100

CVN, ft lbs 110 90

5/8 in. DTE, ft lbs - 800 420

KIc, ksi in. 200-250 160(a )

KId, ksi in. > 200-250 > 160 ( a )

Kim* ksi in. -174 -143

MIL-11018 Type NDT, OF - -20

HY-80 Weldmetal CVN, ft lbs - 42

5/8 in. DTE, ft lbs - 450 260

KC ksi in. - 160 120

Kd ksi in. - -80

K1m ksi in. - -92

HY-130 NDT, OF -120 -60

CVN, ft lbs - 80 60

5/8 in. DTE, ft lbs 550 330

KIc, ksi in. -18 5 (a) 135(a)
K ia, ksi in. -185 ( a )  135 ( a )

Klm, ksi in. -229 - 174

MIL-1405, GMA NDT, OF -110 -60

Type HY-130
Weldmetal CVN, ft lbs

5/8 in. DTE, ft lbs -550 340

KIc, ksi in. - 175 140(a)

KId' ksi in. -175 140 (a )

K 1 , ksi in. -220 - 174

(a) based on DTE

_____.. ........... ._____
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1000 0 Base plate

* Weld plate

800

.00

I-) 0
00

400 -Estimated lower

80060s 100
CVN, ft-lbs

FIGURE 6. CORRELATION BETWEEN CORRESPONDING CVN AND 5/8 IN. DTE
VALUES MEASURED ON THE DUCTILE SHELF FOR THE HY-130
STEELS [DATA OF FIGURES 4 AND 5 AFTER PUZAK(32)]. THE
SCATTERBAND REFLECTS THE APPROXIMATE NATURE OF THE CVN
DTE CORRELATION AND INDICATES THAT A DTE VALUE MAYBE AS
LOW AS 300 FT LBS FOR A CVN OF 60 FT LBS
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Weld Metals

The most telling toughness evaluations of HY grade weld metal--

weld metal and HAZ--are obtained using the explosion bulge test

While this is a very severe test of performance, it has not been correlated

with absolute measures of toughness like Kic or Kid. The only direct LEF14-

type tests are the few measurements of the COD for a HY-130 plate and HAZ
(31)that have recently been reported by Pense These are converted to KId

estimates in Figure 3 (Correlation 13). Estimates of Kd must be drawn

from the body of CVN and DTE measurements of weld metal which have been

developed by NRL. These studies show that, while HY-80 and HY-130 display

near ductile shelf-level behavior on the average, some lower bound values

fall in the transition range.

Figure 7 reproduces lower bound 1 inch DTE curves from a limited

sampling of welds produced by the Portsmouth and NSRDC-A facilities. This

set of results shows that the lowest value at the LAST is 260 ft lbs (5/8

inch DTE) for a vertical position weld. The CVN curves for this class of

weld metal, shown in Figure 8, indicate a lower bound CVN value of 42 ft lbs

at the LAST for weldment just meeting the 20 ft lbs at -60* F minimum speci-

ficatio Figure A-3 indicates that 42 ft lbs (CVN) corresponds with about

2000 ft a inches, 1 inch DTE, or 250 ft lbs -5/8 inch DTE. This is in agree-

ment with the 260 ft lb value mentioned above. Corresponding KId estimates

are listed in Table 3. The Kim value is based on the NDT estimate of Figure

7 and the KILlaYd reference curve of Figure A-2.

Results for a large number of HY-130 welds of the Mil-140S weld

metal GMA type are summarized in Figure 9. The lower bound is an indication

of the poorest quality encountered in practice. These results are for 2 inch

DT specimens. Estimates of the corresponding 5/8 inch DT behavior are obtained

by shifting the curve about 40* F( 3 3 ) and reducing the energy by a factor of

22.6. These results suggest a lower bound of 340 ft lbs 5/8 inch DTE at the

LAST and a maximum NDT temperature of about -600 F. The 340 ft lbs value is

significantly lower than 500 ft lbs @ 300 F specified minimum for this type

of weld metal (see Table 2). The corresponding KId estimate (Correlation 1)

and Kim estimate (Figure A-2) are listed in Table 3.

_ _ _
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FIGURE 9. ENVELOPE OF 2 IN. DTE VALUES FOR HY-O TYPE GMA WELDS
AFTER LANGE(34,35). THE NDT ESTIATE IS BASED ON
CORRELATION 8 IN TABLE 1
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DISCUSSION OF FINDINGS

The lower bound KId values for the HY-CO and HY-130 steel and weld

metals, listed in Table 3, tend to fall short of the toughness levels of

200 MPam - 300 MPam / 2 that are usually associated with ductile, shelf-

level performance. This may be a consequence of the lack of direct measure-

ments for these materials near the LAST, which forces reliance on approximate

(and possibly conservative) DTE and CVN correlations, whose precision for HY-

grades and steels under high toughness levels is not well established. Some

indication of the uncertainty connected with the NRL-DTE-Kc correlation can

be found in Appendix A.

Where minimum toughness levels are specified in terms of CVN-values,

the approximate nature of the CVN-DTE correlation tends to reduce lower bound

estimates of K via DTE even further. The K estimates in Table 3 are
Id Im

particularly uncertain and speculative. No KIm measurements are available

for HY-grades that can be used to test the reference curve procedure. In

addition, the K estimates do not reflect the rising resistance to fracture
Id

with crack extension (R-curve behavior). The positive K-dependence, which

adds significantly to load carrying capacity when such extension proceeds

with shelf-level toughness values, is also not included. Finally, the present

lower bound estimates were obtained without: (i) the precise criteria, (ii)

the statistical treatments of the data, and, in some cases, (iii) the sufficiently

large data base, which is essential for critical structural analyses.

Bearing those limitations in mind, it is still instructive to note

that approximate lower bound values of KId/aY are 2vi'Tn. for HY-80 steel and

liin. for HY-130 steel and the two weld metals. The 2rin. KId/a Y value indi-

cates that a 4 inch thick plate of HY-80 satisfies the (YC) criterion (essen-

tially, leak-before-break at general yield), while a lrin. value indicates

this criterion is only satisfied by HY-130 and the two weldments for 1 inch

thick plate. It would therefore appear that the HY-80 plate is substantially

more resistant to fracture under dynamic loading than the other three material

grades.
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The reliability of future calculatuions of hull-structure fracture

behavior under dynamic loading will be enhan'ced by a better resolution of

the K and K toughness parameters. This will require direct measures of
Id Im

K and K that can be used to calibrate D1!E and CVN values at the LAST.
Id IM

The task of measuring the very large K andi K values is now greatly re-
SId iIm

duced because KIc values can be derived from; J measurements. These measure-

ments use small test pieces under an ASTM prbcedure which is close to stand-

ardization. Since shelf level K values ari likely to be 15-25% larger than
Id

K Ic*, JIc values also offer lower bound estimates of KId .

More research is needed to define Fhe KI dependence of these values,

but this should not be a formidable problem. i Crack arrest Loughness values

can also be obtained from J sc Since KIm KI on the shelf. Finally, JIc

determinations can be combined with measuremEnts of the R-curve which offer

the possibility of describing stable growth and instability in addition to

the onset of crack extension. For weld metal' the existing test procedures
1/ 151sli. / 2 i h

make it possible to measure 100 ksi in.1/2 ! 150 ksi in. in the

transition range. Such measurements are needed to establish the reliability

of a KIM reference curve based on NDT or other procedures for estimating Ki
Im

from more easily measured properties.

Compare shelf-level CVN values for staltistically and dynamically loaded
specimens in Reference (14).

i!
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CONCLUSIONS

A survey of dynamic fracture toughness properties suitable for

analyses of crack propagation in submerged ship hulls has been conducted.

This survey has concentrated on HY-80 and HY-130 steels and their weld metals

at 30* F, the lowest anticipated service temperature (LAST) for these materials.

The key findings of the survey are:

1. The HY-80 and HY-130 grades satisfying specified minimum

toughness requirements display ductile, shelf-level behavior

at the LAST. Weld metals of these grades satisfying minimum

toughness requirements operate closer to the lower part of the

transition region.

2. A lower bound value of the ratio K /a is estimated to be

1/2 Id Y
2 inches for HY-80 at the LAST. For HY-130 and both the

HY-80 and HY-130 weld metals, a lower bound value of this

ratio is about 1 inch / 2*. It appears from these figures that

HY-80 steel is substantially more resistant to fracture under

dynamic loading than are the other three grades examined.

3. Lower bound KId estimates in Table 3 may underestimate the

toughness of the HY-steels and weld metals because of the

dearth of direct measurements of these quantities and consequent

uncertainties in the correlations on which the estimates are

based. Lower bound estimates of the crack arrest toughness,

K M in Table 3 are particularly uncertain and speculative be-

cause no measurements of this quantity are available for any

HY-grades. Direct measurements of KId and Klm are

teasible and should be attempted.

It can be concluded that criteria for "worst-case" lower bound toughness values

should be established. These should be applied to statistical treatments of

the measurements to improve the definition of lower bound toughness values.

This value is based upon plate purchase to a CVN-60 ft-lb requirement

and the CVN-DT Correlation in Figures 6 and A3. If the optional DTE

500 ft-lb at 0°F requirement is used, the minimum KId/ay ratio for the
plate would be 1.6 which is close to a general yield condition for

2 in.-plate.

D
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Also, measurements of shelf value JIC and JR curves should be performed with

the aim of improving and validating the NRL DTE-K correlation and to provide

more reliable, lower bound estimates of KId and K l. Finally, the crack arrest

toughness properties of weld metals with toughness levels close to the specified

minimum should be measured at the LAST with the aim of establishing a suitable

estimation scheme.
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APPENDIX A

CORRELATIONS BETWEEN FRACTURE TOUGHNESS
PARAMETERS AND DTE, NDT, AND CVN

The reliability of different correlations between LEFM fracture

toughness parameters and DTE, NDT, and CVN values is examined in detail in

Reference 10. Some points, which are not treated in that reference, but

are important in the context of this report are discussed below.

Correlations with DTE

The data, which were used to construct the NRL DTE-K correlation
IC

are identified in Figure A-1. Relatively few measurements were originally

performed on medium strength steels in the transition range. The KId portion

of the curve was constructed later, and is based on DTE values at the NDT,

and the assumed relation KId - 0.5 in. , which is approximate. The

curve for the A533B steel is based on 5/8 in.-DTE measurements performed at
NRL [371', and Kic measurements on a number of (different) heats of [533B in

Reference 7. The Kic values predicted by the A533B curve are about 20-30%

smaller than the one obtained from the NRL curve. To be conservative, the

A533B curve is used to estimate KIc and KId values on this report.

Correlation with NDT

The concept of indexing the toughness transition curve to the NDI

temperature, which has been championed by Pellini, is widely used. Recently,

Pellini has proposed a KId reference curve for medium strength steels indexed

to the NDTL 2 . Pellini's curve relates the absolute toughness, KId, to the

relative temperature (T-TNDT). Since the fracture toughness at the NDT-

temperature is believed to vary with yield strength [18 ], an attempt has been

made here to make it more general by expressing the relation in terms of K Id/aYd

with the value of this ratio (K /a )NDT - 0.6/Tn. The resulting reference
Id Yd

curve is shown in Figure A-2. Estimates of K based on the upper bound NDI
Id
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FIGURE A2. PROPOSED "REFERENCE" CLRVES REATING KId AND KIm TO THE
TDIPERATURE RELATIVE TO THE NDT AFTER PELLINI (20) AND
HAHN ET A.L(7)
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and obtained in this way are included in Figures 1 and 3. The same reasoning

has been used to generalize Kla measurements performed on A533B [7 ]. The

Klm/TYd reference curve shown in Figure A-2 is based on K values one stan-
Im Yd (7] I

dard deviations below the average . It should be noted that while this

method of estimating K m is unproven, and speculative, it is the only approach

currently available for estimating crack arrest toughness values.

Estimates of ayd were obtained using the approximation yd +

25 ksi, where a is the conventional yield stress and a is the yield stress
Y03 -1 Yd

for rates of straining ep - 10 sec

Correlation with CVN

A correlation between shelf level CVN and DTE values developed at

NRL [2 7 ] is reproduced in Figure A-3.

L_
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WELD STRUCTURE

The toughness of the HAZ (Heat Affected Zone) of a weld (B-i) can

be lower than that of the base metal or the weld metal (see Figure B-i).

However, because the HAZ is usually narrow, and the weld tapered, a crack

initiated in the HAZ of the butt weld will tend to propagate into the base

metal or the weld metal. Examples of this for a T-frame attachment are

illustrated in Figure B-2. Explosion bulge tests provide further verification

that the HAZ does not provide an easy path for a fracture. These considerations

provide justification for focusing on the base metal and the weld metal and

neglecting the HAZ in lower bound toughness assessments of welded structure.
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FRAMING: SPECIMENS AND WELD JOINT DESIGN (LEFT); CON-
FIGURATGR O EXPLOION OF MDL TEST DIE (RIGRT), AND OBSERVED

FRACTURE PATHS ARE IDENTIFIED IN THE LOWER SECTION BY THE
LETTER A AND B. THE EXPLOSIVE WAS DETONATED ON THE T-FRAME
SIDE OF THE MODEL. AFTER BABECKI AND PUZAK(36)


